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Parametric Study of Zigzag Microstructure for
Vibrational Energy Harvesting

M. Amin Karami and Daniel J. Inman, Fellow, ASME

Abstract—A comprehensive parametric study is presented on
the vibration and the energy harvesting performance of a low-
frequency zigzag energy harvester. The zigzag microelectro-
mechanical systems (MEMS) vibrational energy harvesters have
low natural frequencies which match the low-frequency range of
ambient vibrations. The harvesters can, therefore, be designed to
resonate with ambient excitation. The power produced by energy
harvesters at resonance is orders of magnitude larger than off
resonance power. The paper aims at providing an easy-to-use,
comprehensive tool for designing the harvesters for different ap-
plications. The two key characteristics of the vibrational energy
harvesters are their resonance frequency and their power transfer
function. We formulate both vibrations and power production of
the zigzag MEMS harvesters in nondimensional equations. The
paper advances the state of the art in MEMS energy harvesting re-
search area by identifying the dimensionless parameters governing
mechanical vibrations and energy generation. We also investigate
how the resonant frequency and the maximum power vary with
each of the corresponding dimensionless parameters. The graphs
summarize the parametric studies and provide sufficient tools for
design of zigzag harvesters. The natural frequencies are related
to six dimensionless variables, and the power transfer functions
depend on 12 dimensionless parameters. [2010-0298]

Index Terms—Dimensionless, energy harvesting, low-frequency,
microelectromechanical systems (MEMS), parametric study,
piezoelectric.

NOMENCLATURE

âb = (d2wb/dt2)/lω2
1 Dimensionless base acceleration.

BTR Bending/torsion ratio.
b the width of the lateral beams.
Cp Total capacitance of the harvester.
Ĉp = (ρAl3ω2

1/α2)Cp Dimensionless capacitance

c =

√
Y I

ρA

d Distance between two adjacent
beams.
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d̂ = d/l Dimensionless distance between
beams.

e31 electric field-stress coupling coeffi-
cient in 31 direction (C/m2) [1].

GJ Torsional stiffness

g =

√
GJ

Ip

hp Thickness of the piezoelectric layer.
hs Thickness of the substructure.
Ip Polar mass moment of inertia.
j The unit imaginary number,

√
−1.

k = GJ/Y I Stiffness parameter.
l The length of each of the beams.
mt Tip mass.
m̂t = mt/ρAl Dimensionless tip mass.
ml Link mass.
m̂l = ml/ρAl Dimensionless link mass.
n The total number of members.
Pt State of the ith switch.
p̂ = p/ρAlω3

1 Dimensionless power.
R The load resistance.
R̂ = α2R/ρAl3ω1 Dimensionless load resistance.
V Voltage across piezoelectric layer.
V̂ = (α/ρAl3ω2

1)V Dimensionless piezoelectric voltage.
wb(t) Base out-of-plane motion.
wi(x) Out-of-plane deformation of the ith

beam.
ŵi = wi/l Dimensionless out-of-plane deforma-

tion.
x coordinate along each of the beams.
x̂ = x/l Dimensionless x-coordinate.
xend The x-coordinate of the free end.
x∗ The x-coordinate of the connection of

two lateral beams.
Ys Young’s modulus of substructure.
Yp Young’s modulus of piezoelectric

layer.
Y I Bending stiffness.
α Electromechanical coupling coeffi-

cient.
βi(x) Twist angle of the ith beam.
γ Torsional dimensionless parameter.
δ(x) Dirac delta function.
εs
32 Permittivity of the piezoelectric layer.

ζ Damping ratio.
λn = ωnl2/c Dimensionless nth natural frequency.
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μ̂m Dimensionless forcing coefficient.
ρp Density of the piezoelectric material.
ρs Density of the substructure material.
ρA Mass per unit length of the beams.
ψ̂m Dimensionless electromechanical

coupling coefficient.
iφn nth bending mode shape of the ith

member.
iφ̂n = iφn/l Dimensionless bending mode shape.
ω̂n = ωn/ω1 Dimensionless natural frequency.

I. INTRODUCTION

V IBRATION ENERGY harvesters convert ambient vibra-
tions to electrical energy. They can power small sensor

nodes used for numerous applications where there is no easy
access to a power grid. The alternative method of powering
autonomous sensors has been using batteries. The batteries have
to be changed frequently which can be troublesome particularly
if the sensors are embedded or otherwise hard to get at. In
addition, it is desired to make the power harvesters as small
as possible. The microscale microelectromechanical system
(MEMS) energy harvesters match the numerous commercially
available MEMS sensors and can form ultra low weight, fully
autonomous sensor nodes.

One of the main challenges facing development of MEMS
energy harvesters is the frequency issue. The majority of vibra-
tional energy harvesters are linear, which means they should
be excited at resonance. This requires the natural frequency
of the harvesters to be between 1 and 100 Hz, which has
proven to be a major challenge, which we overcome in this
paper. The early designs reported in the literature have the same
thickness-to-length ratio as large-scale structures. This caused
the corresponding natural frequencies to be in range of kHz
[2]–[6]. In reality, to have a structure which is strong enough
to sustain the vibrations, the thickness has to be proportional to
its length squared. This means that the thickness-to-length ratio
of MEMS structures has to be much less than that ratio of their
large size counterparts. By choosing a thickness-to-length ratio
of 1/100, Fang et al.[7] were able to achieve 600-Hz natural
frequency. The trend was followed by [8]–[12] and natural
frequencies of about 530, 460, 370, 325, and 100 Hz were
achieved. The natural frequency has to be lowered further to
match the ambient excitations, and the cantilever beam design is
too simple to facilitate that. Yang et al.[13] presented a 7.5 mm
by 7.5 mm rotary electrostatic power harvester with the first
natural frequency at 110 Hz. In addition to the relatively large
size of their harvester, their choice of spring geometry helped
reduce the natural frequency.

The authors proposed using the zigzag design (Fig. 1) for
MEMS vibrational energy harvesters [14]. They analytically
studied and experimentally verified the natural frequencies and
the mode shapes of the meandering structure and showed that
a MEMS scale harvester with the useful natural frequency
can be achieved by utilizing the zigzag design. It was shown
that not only does a zigzag structure have a significantly
lower natural frequency compared to a cantilever beam of the
same dimensions, but also that the reduction of frequency is

achieved without sacrificing the strength of the structure. The
electromechanical vibrations of the harvester was also studied
[15], and it was shown that using the zigzag design improves
the power production of the MEMS harvesters by orders of
magnitude.

Spiral structures [16], [17] have also been used to lower the
natural frequency of the harvester. The main problem hindering
the use of spiral geometry for harvesting application is the fact
that the out-of-plane vibrations of the spirals are dominantly
torsional [17]. This requires a complicated electrode configura-
tion to be able to harness the generated energy.

The paper continues by a brief discussion of the zigzag
structure and the governing equations for electromechanical
vibrations. We then study the energy harvesting problem in two
parts. The first part is the study of the vibrational characteristics
of the device, i.e., its natural frequencies and mode shapes.
For this part, we first perform a general dimensional analysis,
which identifies the number of dimensionless parameters that
describe the vibration problem. Nondimensionalizing the gov-
erning equations and the boundary, equilibrium, and continuity
conditions reveals the dimensionless parameters. In the vibra-
tion analysis results section, we study the relation between each
of the dimensionless parameters and the natural frequencies.
Also, to better understand the power production, we distinguish
the deflections due to the bending of the structure and the
deformations due to torsion. Only bending of the harvester
results in power generation, and we discuss which designs
have larger bending deformations. We then move on to the
second part which directly concerns power harvesting or in
more technical terms, the forced electromechanical vibrations
of the zigzag harvester. Similar to part one, we start with
a general dimensional analysis and identify the number of
dimensionless parameters that affect the power output. We then
proceed by nondimensionalizing the forced vibration equation
to find the dimensionless quantities. The first step in study
of the forced response of the continuous vibration system is
proving the orthogonality of the modes and mass normalizing
each mode. We then derive the power production, voltage
generation, and tip deformation frequency response functions.
In the electromechanical results section, we study the variation
of power output with each of the dimensionless parameters.
The vibration and power production results not only reveal the
relation between each of the design variables and the power
output but also provide comprehensive easy-to-use tools for
design and optimization of zigzag harvesters of all sizes and
materials.

II. ZIGZAG STRUCTURE AND THE GOVERNING EQUATIONS

The zigzag energy harvester is shown in Fig. 1(a). The base
excitations make the structure vibrate in and out of the main
plane. The structure is bilayered (Fig. 1(b)). The thin piezoelec-
tric layer is typically few micrometers thick and is sandwiched
between two ultra thin metal layers acting as electrodes. The
base layer (or substructure) can be silicon and is normally
much thicker than the piezoelectric layer. The structure is
clamped at one end and supports a tip mass at its other end,
forming a cantilever structure. This configuration is modeled as
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Fig. 1. Zigzag structure. (a) The device. (b) The piezoelectric layer and the substrate.

a collection of straight beams, with rectangular cross sections,
placed next to each other on the main plane. Each beam is
connected to its neighbor beams at its ends by the link portions.
Each of the beams can bend out of the main plane and can twist.
Since the links are short, we model them as rigid connections.
We do, however, take their mass into consideration. In fact, we
consider the mass of the links as one of the design variables and
study if we can increase power production by attaching large
masses to the links.

When the structure bends, the charge generated by the piezo-
electric material is collected by the electrodes, and the electrical
energy is produced. Due to the electrode configuration, the
torsion of the individual beams does not generate any voltage
across the electrodes, and the harvested energy is attributed only
to the bending in the structure.

Each of the individual members is a beam which can bend
and twist. The mechanical vibration of the beam is excited
by base oscillations and the electric voltage. The governing
bending and torsional differential equations of each beam are
[18], [19]

Y I
∂4wi

∂x4
+ ρA

∂2wi

∂t2
= − α

[
dδ(x)
dx

− dδ(x − L)
dx

]
V (t)

− [ρA + mlδ(x − x∗)

+ mtδ(x − xend)] ẅb(t) (1)

GJ
∂2βi

∂x2
− Ip

∂2βi

∂t2
= 0. (2)

The coupling coefficient, α, is related to piezoelectric
coupling by α=(e13b/2)(hp+(h2

p−(Ys/Yp)h2
s)/(hp+

(Ys/Yp)hs)). The clamped condition at the base and the
free condition at the tip result six essential and natural
boundary conditions

w1(0, t) = 0,
∂w1(0, t)

∂x
= 0, β1(0, t) = 0 (3)

∂2wn(xend, t)
∂x2

= 0,
∂3wn(xend, t)

∂x3
= ∓mt

EI
ω2wn(xend, t),

∂βn(xend, t)
∂x

= 0. (4)

In the above equations, xend is the x-coordinate of the free
end of the structure. If there are even number of beams in
the meandering structure, xend is 0, otherwise it is l. The

vibrations of the individual beams are related to each other
through continuity and equilibrium conditions [14]

Wt(x∗, t) = d × βi−1(x∗, t) + wi−1(x∗, t),
∂wi(x∗, t)

∂x

=
∂wi−1(x∗, t)

∂x
,

βi−1(x∗) =βi(x∗) (5)

∂2wi(x∗, t)
∂x3

=
−∂2wi−1(x∗, t)

∂x2
, Y I

∂3wi−1(x∗, t)
∂x3

= − Y I
∂3wi(x∗, t)

∂x3
∓ mlẅi−1(x∗, t),

k
∂βi−1(x∗, t)

∂x
= − k

∂βi(x∗, t)
∂x

− ∂3wi(x∗, t)
∂x3

× d. (6)

The dimensionless parameter k is defined as k = GJ/Y I
and x∗ stands for the x-coordinate of the link between two
adjacent members which can be either 0 or l.

In addition to the mechanical governing equations, the elec-
trical equations should be considered. The members of the
structure are electrically connected in parallel configuration as
shown in Fig. 2. The switches shown in Fig. 2 (small boxes)
can be used to reverse the polarity of the generated voltage
(or current). They determine whether the voltage across each
member is equal to the voltage across the load or is its negative.
Correspondingly, the switches also identify weather the current
going into each member should be added to or subtracted from
the current in other members to give the total current passing
through the load. The state of the ith switch is noted by Pi

and is either 1 or −1. The current passing though each member
is [20]

ii(t) = −α
d

dt

(
l∫
0

∂2wi

∂x2 dx

)
− εs

33blPi

hp
ν̇(t)

. (7)

The currents are added together, after being directed by the
switches, and pass through the electrical load characterized by
the resistance R. The voltage across the resistance which is the
same in magnitude as the voltage across each beam is governed
in part by the following equation:

CpV̇ +
V

R
= −α

n∑
i=1

Pi
d

dt

⎛⎝ L∫
0

∂2Wi

∂x2
dx

⎞⎠ . (8)
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Fig. 2. Electrical connections, top view.

The total capacitance of the harvester, Cp, is

Cp = n
εs
33bl

hp
. (9)

To use the modal analysis approach to solve this continuous
vibration problem, we first find the natural frequencies and
mode shapes of the mechanical structure. To this end, we
consider the free vibrations equations

c2 ∂4wt

∂x4
+

∂2wt

∂t2
= 0, c =

√
Y I

ρA
(10)

g2 ∂2βi

∂x2
=

∂2βi

∂t2
, g =

√
GJ

Ip
. (11)

Seeking the nonzero solutions of (10) and (11) which satisfy
the boundary, equilibrium, and continuity conditions (3)–(5)
leads to finding the natural frequencies and mode shapes.

III. DIMENSIONAL ANALYSIS

In this section, we look at the problem from a broad per-
spective and derive the number of dimensionless numbers that
completely characterize the vibration problem. We specifically
derive the dimensionless numbers later in Section IV. There
are two key objectives in designing a vibrational energy har-
vester. The first is to tune the fundamental natural frequency
to the frequency of ambient vibrations. The second goal is to
maximize the harvested power. Accordingly, we first focus on
the natural frequencies of the structure, and later we identify
the number of dimensionless parameters that characterize the
harvested power.

It can be seen from (5) and (6) and (10) and (11) that the
natural frequencies of the zigzag structure are functions of the
following parameters:

ωn = ωn

(
c, g, L,

mt

EI
,
ml

EI
, d, k, n

)
. (12)

The dimensions of the parameters are L2T−1, LT−1, L, LT 2,
LT 2, L,1, and 1 accordingly, and the dimension of the natural

frequencies is T−1. Since there are eight variables described by
two dimensions, a dimensional analysis [21] suggests restate-
ment of the physics as a relation between 9 − 2 = 7 dimen-
sionless variables. Here, instead of performing a pi-analysis
to come up with the dimensionless parameters, we proceed
by nondimensionalizing the governing equations and boundary
conditions. The dimensionless variables will become evident
during the analysis.

IV. NONDIMENSIONALIZATION OF THE MODAL ANALYSIS

Using separation of variables, (10) and (11) are converted
into the following ordinary differential equations:

W
(4)
i − ω2

n

c2
Wi = 0, B′′

i +
(

ωn

g

)2

Bi = 0. (13)

To put the above equations into the dimensionless form, the
following dimensionless parameters are introduced:

x̂ =
x

l
, ŵi =

Wi

l
. (14)

Substituting for W from (14) in (13) and applying the chain
rule result

d4ŵi(x̂)
dx̂4

− λ2ŵi(x̂) = 0 (15)

d2Bi(x̂)
dx̂2

+ λ2γ2Bi(x̂) = 0. (16)

In the above governing equations for bending and torsion of
each member, the dimensionless parameters λ and γ are de-
fined as

λn =
ωnl2

c
, γ =

c

gl
=

√
Y I
ρA

l
√

GJ
Ip

. (17)

So far, we have derived two of the seven dimensionless
variables; λn is the dimensionless variable related to the nth
natural frequency, and γ is the torsional dimensionless variable.
The next two variables are derived by nondimensionalizing the
tip mass natural boundary condition (4b) and the shear force
equilibrium condition (6b)

d3ŵn(x̂end)
dx̂3

= ∓ m̂tλ
2ŵn(x̂end) (18)

∂3ŵi−1(x̂∗)
∂x̂3

= − ∂3ŵi(x̂∗)
∂x̂3

∓ m̂lλ
2ŵi−1(x̂∗) (19)

where the dimensionless variable m̂t is defined as m̂t =
mt/ρAl, and is the tip mass divided by the mass of a member.
The link mass dimensionless variable, m̂l, is similarly defined
as m̂l = ml/ρAl.

The last new dimensionless variable is revealed during
nondimensionalization of the continuity condition. The fol-
lowing equation relates the displacement of two consecutive
members at their point of connection (5a):

ŵi(x̂∗) = d̂Bi−1(x̂∗) + ŵi−1(x̂∗), d̂ =
d

l
. (20)
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The five introduced dimensionless parameters plus the di-
mensionless variables k and n form the seven dimensionless
variables that fully describe the problem. The natural frequency
dimensionless parameter can be expressed as a function of the
rest of the dimensionless variables

λn = λn(n, d̂, m̂t, m̂l, k, γ). (21)

To find the natural frequencies, we follow an approach
similar to [14]. We consider the governing equations for the
vibration of each of the members (15) and (16) and write the
general solution in exponential form

ŵi(x̂)=
4∑

j=1

Aije
sij x̂, sij =±

√
λ,±i

√
λ,

j =1, 2, . . . , 4 (22)

Bi(x̂)=
6∑

j=5

Aije
sij x̂, sij =±iγλ. (23)

The unknown coefficients Aij are calculated by observing
the boundary conditions at the clamped and free ends and
also by preserving the equilibrium and continuity conditions
at the connection points of consecutive members. Two of these
condition have already been discussed in (18) and (20). The rest
of these conditions are similar to those expressed in [14] and
are not elaborated for brevity. Since all these 6 × n conditions
involve the coefficients Aij , we can put all of them in a matrix
relation

[M ]6n×6n[A11, . . . ,A16,A21, . . . ,A26, . . . ,An1,An6]T=06n×1.
(24)

The determinant of the matrix [M ] depends on the exponents
Sij which in turn are functions of λ. The natural frequency
parameters λn are those specific values which make the M -
matrix singular and therefore allow nontrivial responses. To
find the mode shapes corresponding to each natural frequency,
the values of λn are substituted in (24), and the corresponding
Aij coefficients are derived. The mode shapes were previously
plotted in [14].

V. FREQUENCY ANALYSIS RESULTS

The natural frequency dimensionless parameters, λn, are
functions of six dimensionless variables: n, d̂, m̂t, m̂l, k, and
γ. The effects of individual dimensionless parameters on the
frequency are discussed in this section. The illustrations have
been arranged to make the results easy to use.

A. Relation Between the Natural Frequencies
and the Number of Members

The natural frequencies significantly drop with the number
of members. It can be inferred from Fig. 3 that the fundamental
natural frequency of a 10-member structure is about 1/10 of
the first natural frequency of a single cantilever beam. Also,
the frequencies get more packed as the number of members

Fig. 3. Relation between the number of members and the first five natural

frequencies; d̂ = 0.1, m̂t = 10, m̂l = 0, k = 1, γ = 0.02; the legend shows
the mode number.

increases. We discuss the implications of this fact for power
harvesting in Section VIII-A.

B. Relation Between the Natural Frequencies
and the Lateral Distance

Fig. 4 shows the relation between the first two natural
frequencies and the dimensionless lateral distance between
the consecutive beams. The natural frequencies drop as d̂
is increased. This suggests increasing the lateral distance to
achieve lower natural frequency. Increasing the lateral distance,
however, comes with a significant drawback, which is discussed
in Section V-G.

C. Relationship Between the Natural Frequencies
and the Stiffness Ratio

The dimensionless parameter k indicates the torsion/bending
stiffness ratio. An increase in this ratio means an increase in
torsional stiffness while the bending stiffness is constant. This
results in the direct relationship between the first two natural
frequencies and the stiffness ratio which is shown in Fig. 5.

D. Relationship Between the Natural Frequencies and γ

The dimensionless analysis shows that the torsional param-
eter γ has a negligible influence on the natural frequencies.
Therefore, with a very good approximation, we can remove the
parameter γ from our vibration study and reduce the dimension
of the problem by one.

E. Relationship Between the Natural Frequencies
and the Tip Mass

Generally, adding tip mass reduces all of the resonant fre-
quencies. Fig. 6 shows that if the dimensionless tip mass is less
than 1, the tip mass effects are small. The fundamental mode is
the most sensitive mode to the tip mass. If the normalized tip
mass is larger than one, i.e., the tip mass is more than the mass
of a single beam, the fundamental natural frequency is inversely
proportional to

√
m̂h. Fig. 6(b)–(d) shows that the second mode

is not as sensitive to variations of the tip mass.
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Fig. 4. Relation between d̂ and the first four natural frequencies: (a) mode 1, (b) mode 2, m̂t = 10, m̂l = 0, k = 1, γ = 0.02, the legend shows the number
of beams.

Fig. 5. Relation between k and the natural frequencies: (a) mode 1, (b) mode 2, d̂ = 0.1, m̂t = 10, m̂l = 0, γ = 0.02, the legend shows the number of beams.

Fig. 6. Effect of m̂t on natural frequencies: (a) mode 1,(b) mode 2, d̂ = 0.1, m̂l = 0, k = 1, γ = 0.02, the legend shows the number of beams.

F. Relationship Between the Natural Frequencies
and the Link Mass

Similar to the tip mass, the link masses reduce the natural
frequencies of the structure. It has been assumed that all the
links in the zigzag structure have the same mass. It is possible
to place large link masses to reduce the natural frequency of the
structure. As Fig. 7 shows, the tip masses reduce the resonant
frequency of the higher modes as well as the fundamental. The
link mass effect on first natural frequency becomes prominent
when the dimensionless link mass, i.e., the link mass divided

by the mass of a single beam, is larger than both 1 and the
normalized tip mass. In that case, the fundamental frequency
is inversely proportional to the square root of the dimensionless
link mass.

G. Contribution of Bending Deformation

The coupling coefficients for harvesting from torsional and
bending deflections are different. As shown in Fig. 8, this
causes the direction of the electric field to be different in
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Fig. 7. Effect of m̂l on natural frequencies: (a) mode 1, (b) mode 2, d̂ = 0.1, m̂t = 10, k = 1, γ = 0.02, the legend shows the number of beams.

Fig. 8. Electric field directions in bending and torsional deformation.

bending and torsional deformation. Since there is only one
pair of electrodes placed at the top and bottom surfaces of
the piezoelectric layer, energy can only be harvested from the
bending vibrations of the piezoelectric structure. The bending
index is defined as the ratio between the bending potential
energy over the overall elastic potential energy, as shown by
the equation at the bottom of the page.

If the mode shapes indicate that the deflection is solely due
to bending of the members (for example, the mode shapes
of a single beam), the value of bending/torsion ratio (BTR)
is one. In contrast, if the deflections are dominantly torsional
(deflection of a zigzag structure with too many members), BTR
equals zero. Fig. 9 shows that the first mode becomes more
torsional as the number of members increases. Although the
BTR for the even modes varies as the number of members
changes, the vibration of these modes is always dominantly in
bending. We are mostly interested in energy harvesting from
the fundamental mode since it corresponds to the lowest natural
frequency. Fig. 9 also shows that the tip mass can be utilized
to improve the bending deformation of the first mode. The
lateral distance between the members (characterized by d̂) also
affects the available bending energy in the structure. As shown
in Fig. 10, the lateral distance has a prominent effect on the
BTR. The less the distance, the more bending occurs in the
fundamental mode of the structure. This suggests using narrow
members in the structure to reduce the distance between the
centerlines.

VI. DIMENSIONAL ANALYSIS OF THE

ELECTROMECHANICAL PROBLEM

We are interested in finding the transfer function between the
base vibrations, wb, and the output voltage, V , and the electric
power in the frequency domain as this is also important in
design. Considering the damping in the structure, the frequency
response function is a function of the excitation frequency and
the design variables

V (ω)
Wb(ω)

= f(ω, ζ, Cp, R, ρA, l, α, modal parameters).

The modal parameters refer to the natural frequencies and
the mode shapes, which as discussed in Section IV are in turn
functions of n, d̂, m̂t, m̂l, k, and γ. The harvested power is
therefore function of these parameters

p = p(Wb, ω, ζ, Cp, R, ρA, c, α, l, Pi, n, d̂, m̂t, m̂l, k, γ).
(25)

The dimensions of the parameters in (25) are, L, T−1, 1,
Q2T 2M−1L−2, ML2Q−2T−1, ML−1, L2T−1, Q, L, 1, 1, 1, 1,
1, and 1. The dimension of the power is ML2T−3. There are 17
interrelated parameters and four dimensions. Therefore, 17 −
4 = 13 dimensionless parameters are required to describe the
relation. So far, we have identified eight of the dimensionless
parameters (n, d̂, m̂t, m̂l, k, γ, Pi, and ζ). The remaining five
will be derived in the next section.

VII. NONDIMENSIONALIZATION OF THE

ELECTROMECHANICAL FORMULATION

This section considers the forced electrometrical vibrations
of the structure described by (1) and (2) and (8). We first con-
sider the mechanical side of the governing equations. (1) and
(2) are written in terms of modal coordinates, are premultiplied
by the mode shapes, and are integrated all over the structure.

BTR =
1
2

∫
all members Y I (ŵ′′(x̂))2 dx̂

1
2

∫
all members Y I (ŵ′′(x̂))2 dy + 1

2

∫
all members GJ (B′(x̂))2 dx̂
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Fig. 9. Effect of the number of beams on bending/torsion ratio: (a) mode 1, (b) mode 2, m̂l = 0, k = 1, γ = 0.02, the legend shows m̂t.

Fig. 10. Effect of the number of beams on bending/torsion ratio: (a) mode 1, (b) mode 2, m̂t = 10, m̂l = 0, k = 1, γ = 0.02, the legend shows d̂.

Applying the orthogonality conditions [refer to Appendix, (45)
and (46)] results in

n∑
i=1

⎡⎣Y I

L∫
0

(iφ
′′
m)2 dx + GJ

L∫
0

(iB
′
m)2 dx

⎤⎦Tm(t)

+

⎧⎨⎩
n∑

i=1

⎡⎣ρA

L∫
0

(iφm)2dx + Ip

L∫
0

(iBm)2dx

⎤⎦
+mt (nφm(xend))2 +

n−1∑
i=1

ml (iφm(x∗))2

⎫⎬⎭ T̈m(t)

= −αV (t)
n∑

i=1

pi [iφ′
i(L) −i φ′

i(O)] − ẅb(t)

×

⎡⎣ n∑
i=1

ρA

L∫
0

iφn(x)dx

+
n−1∑
i=1

mliφm(x∗) + mt nφm(xend)

]
. (26)

We then introduce the following change of variables to
nondimensionalize the equations:

iφ̂m = iφm

l
, x̂ =

x

l
, k =

GJ

Y I
, λm = ωml2

√
ρA

Y I
,

V̂ =
α

ρAl3ω2
1

V, m̂t =
mt

ρAl
, m̂l =

ml

ρAl
,

Îp =
Ip

ρAl2
=

γ2

k

ω̂n =
ωn

ω1
, τ = ω1t, ŵb =

wb

l
. (27)

The change of variables in (27) puts (26) in the correspond-
ing dimensionless form below

n∑
i=1

⎡⎣ 1∫
0

(
d2

iφ̂m

dx̂2

)2

dx̂ + k

1∫
0

(
diBm

dx̂

)2

dx̂

⎤⎦Tm(τ)

+ λ2
1

⎧⎨⎩
n∑

i=1

⎡⎣ 1∫
0

iφ̂
2
mdx̂ + Îp

1∫
0

(iBm)2dx̂

⎤⎦
+m̂l nφ̂2

m(x̂end) +
n−1∑
i=1

mt iφ̂
2
m(x̂∗)

}
d2Tm(τ)

dτ2

= −λ2
1V̂ (τ)

n∑
i=1

pi

[
diφ̂m(1)

dx̂
− diφ̂m(0)

dx̂

]
− λ2

1

d2ŵb

dτ2

×

⎡⎣ n∑
i=1

1∫
0

iφ̂m(x̂)dx̂+
n=1∑
i=1

m̂l iφ̂m(x̂∗)+m̂t nφ̂m(x̂end)

⎤⎦ .

(28)
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If we mass normalize the already dimensionless mode shapes
according to the following equation:

n∑
i=1

⎡⎣ 1∫
0

iφ̂
2
mdx̂ + Îp

1∫
0

(iBm)2dx̂

⎤⎦+ m̂t nφ̂2
m(x̂end)

+
n−1∑
i=1

m̂l iφ̂
2
m(x̂∗) = 1. (29)

From (46) and (28), we have the following final dimension-
less form of the mechanical governing equation:

d2Tm(τ)
dτ2

+ Tm(τ) = −ψ̂mV̂ (τ) − μ̂m
d2ŵb

dτ2
(30)

where the dimensionless electromechanical coupling coeffi-
cient, ψ̂m, and the dimensionless forcing coefficient, μ̂m, are
defined as

ψ̂m =
n∑

i=1

Pi

[
diφ̂m(1)

dx̂
− diφ̂m(0)

dx̂

]
(31)

μ̂m =
n∑

i=1

1∫
0

iφ̂m(x̂)dx̂ +
n−1∑
i=1

m̂l iφ̂m(x̂∗)

+ m̂t nφ̂m(x̂end). (32)

Equation (30) manifests the mechanical vibrations which are
influenced by the base excitation and are interrelated to the elec-
tric voltage. We define dimensionless base acceleration as âb =
d2ŵb/dτ2. It is interesting to see that âb = (d2wb/dt2)/lω2

1 .
On the electrical side, the current generated due to the piezo-

electric effect passes through the resistive load and the capacitor
made by the two electrodes on the surfaces of the piezoelectric
layer. Using the same dimensionless parameters in (27), we can
nondimensionalize (8) to

Ĉp
dV̂

dt
+

V̂

R̂
=

∞∑
m=1

ψ̂m

dTm(τ)

dτ
(33)

where ψ̂m has been defined before, and dimensionless capaci-
tance and resistance are defined as

Ĉp =
ρAL3ω2

1

α2
Cp R̂ =

α2R

ρAL3ω1
. (34)

Taking the key mechanical equation, (30), and the key elec-
trical equation, (33), to Fourier domain, we get the following
transfer function between the voltage across the load and the
base excitation:

V̂ (ω̂)
âb(ŵ)

= −

∑∞
m=0

μ̂mψ̂m

ω̂2
m+2ζω̂ω̂m−ω̂2

1

R̂jω̂
+ Ĉp +

∑∞
m=0

ψ̂2
m

ω̂2
m+2ζω̂ω̂m−ω̂2

(35)

where ω̂ is the dimensionless natural frequency and is defined
as ω̂ = ω/ω1. Although we cannot express the power as a
frequency response function, the following fraction gives the

power output when the base excitation is composed of only one
frequency:

p̂(ω̂)
â2

b(ω̂)
=

1

2R̂

⎛⎜⎝
∑∞

m=0
μ̂mψ̂m

ω̂2
m+2ζω̂ω̂m−ω̂2

1

R̂jω̂
+ Ĉp +

∑∞
m=0

ψ̂2
m

ω̂2
m+2ζω̂ω̂m−ω̂2

⎞⎟⎠ . (36)

At this point, we have successfully put the power production
problem as an exact relation among 13 dimensionless numbers.
The additional five dimensionless numbers that we predicted
in Section VI are: p̂, ω̂, âb, R̂, and Ĉp. Note that the modal
parameters, μ̂m, ψ̂m, ω̂m are all in turn functions of n, d̂,
m̂t, m̂l, k, and γ. The actual and dimensionless power are
related as

p = p̂ρAl3ω3
1 . (37)

The Fourier transform of the temporal function Tm(τ) is
noted by Tm(ω) and is calculated from (30) and (35) as
(38),shown at the bottom of the next page.

The tip deflection can then be calculated by summing the
effect of individual modes

ŵt(ω̂)
âb(ω̂)

=
∞∑

m=1

Tm(ω̂)
âb(ω̂) nφ̂m(xend). (39)

VIII. ELECTROMECHANICAL POWER

PRODUCTION RESULTS

The dimensionless power is a function of n, d̂, m̂t, m̂l, k,
γ, Pi, ζ, ω̂, âb, R̂, and Ĉp. In this section, we present the
relation between each of the parameters and the power produc-
tion. The polarity of the switches is always optimized based
on the fundamental mode according to the scheme presented
in [15]. The typical values of dimensionless parameters for
MEMS harvesters are: d̂ = 0.1, m̂t = 100, m̂l = 0.1, k = 1,
γ = 0.01, Ĉp = 10, and ζ = 0.01. To examine the effect of
each dimensionless variable, we change only that parameter
and keep the others fixed at the values specified above. In each
study, we consider a few structures with different number of
beams, n.

A. Excitation Frequency and Load Resistance

The power outputs of all linear vibrational energy harvesters
are sensitive to the excitation frequency and the load resistance.
This is also the case with zigzag microharvesters. Fig. 11
shows the dimensionless power output of 1-, 3-, 7-, and 12-
member structures as a function of the excitation frequency.
The powers peak at resonance frequencies. The best excitation
frequency is the fundamental natural frequency. There are two
reasons for the superiority of the fundamental mode. First,
the switches have been set according to the first mode shape.
This selection minimizes power cancelation of the first mode
but is not optimal for the higher modes. The second reason is
that the parameters μi and ψi corresponding to higher modes
are much less than those of the first mode. This means that
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Fig. 11. Power output frequency response function; the legend shows the
number of beams.

Fig. 12. Relation between the power output transfer function at ω̂ = 1 and
the load resistance; the legend shows the number of beams.

the higher modes are less excited and also have less charge
generation compared to the fundamental mode. This causes
the optimal power to correspond to ω̂ = 1. Note that since the
fundamental frequencies of structures with different number of
members are different, the ω̂ = 1 translates to different physical
frequencies depending on n. We can also observe from Fig. 11
that the more members the structure has, the closer the first
two natural frequencies become. This implies that the zigzag
structures with a large number of members are more beneficial
for broadband energy harvesting.

There is also an optimal value for the load resistance. Fig. 12
shows that the power increases proportional to R̂ until it peaks
at the optimal resistance and then decreases inversely propor-
tional to R̂. The optimal load is not the same for different
number of members. From this point on, we focus on the power
output when the excitation frequency and the load resistance are
at their optimal values. This is a reasonable approach since we
can tune the natural frequency using the analysis in Section V,
and we can also use a Buck Boost transformer [22], [23] to
match the optimal resistive load.

B. Capacitance of the Piezoelectric Layer

Another parameter that affects the dimensionless power out-
put is the dimensionless capacitance, Ĉp. As mentioned before,
the output power discussed is the optimal power meaning that
the excitation frequency and resistive load are at their optimal
values. The optimal excitation frequency is always very close
to ω̂ = 1. The optimal resistance however varies case by case,
and we therefore plot that in addition. Fig. 13(a) shows that
only after a certain threshold does Ĉp have visible effects on
power production. Beyond this threshold, which depends on
the number of members, the power is inversely proportional
to the capacitance. If the capacitance of the piezoelectric layer
is larger than the threshold, the optimal resistance shown in
Fig. 13(b) would solely depend on Ĉp. In that region, the op-
timal resistance is inversely proportional to the dimensionless
capacitance. Typically, the Ĉp is larger than 1 which implies
that the capacitance does affect the power output and the
dimensionless optimal resistance does not directly depend on
the number of beams.

C. Damping Ratio

Generally, a smaller damping ratio corresponds to more
power production, but the sensitivity of the power to damping
ratio varies. Here, again we consider the power production
when both the excitation frequency and load resistance are
optimal. If the damping ratio is larger than a certain value,
the mechanical vibrations of the device are not affected by
the harvested energy. In this range, the power is inversely
proportional to the damping ratio square. Fig. 14(a) shows that
the value of the critical damping ratio depends on the number
of members and that the larger structures have less critical
damping. If the structural damping is less than the critical value,
the energy dissipation in the mechanical system is mainly the
harvested energy. In this range, the power is still related to
damping ratio and is inversely proportional to ζ. The optimal
resistance is insensitive to damping ratio if ζ is larger than the
critical damping as suggested by Fig. 14(b).

D. Tip Mass

The harvested power increases with the tip mass. How-
ever, the relation between the power and tip mass is more
complicated than the dependence of natural frequencies on
the tip mass [Fig. 15(a)]. The optimal resistance in structures
with only a few members significantly increases with the in-
crease of tip mass, but for structures with more than 12 mem-
bers, the optimal resistance is indifferent to the dimensionless
tip mass.

Tn(ω̂)
âb(ω̂)

= − 1
ω̂2

n + 2ζω̂ω̂n − ω̂2

⎛⎜⎝μ̂n − ψ̂n

∑∞
m=0

μ̂mψ̂m

ω̂2
m+2ζω̂ω̂m−ω̂2

1

R̂jω̂
+ Ĉp +

∑∞
m=0

ψ̂2
m

ω̂2
m+2ζω̂ω̂m−ω̂2

⎞⎟⎠ (38)
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Fig. 13. Effect of the capacitance on (a) the maximum power transfer function and (b) the optimal resistance; the legend shows the number of beams.

Fig. 14. Effect of the damping ratio on (a) the maximum power transfer function and (b) the optimal resistance; the legend shows the number of beams.

Fig. 15. Effect of the tip mass on (a) the maximum power transfer function and (b) the optimal resistance; the legend shows the number of beams.

E. Link Mass

Interestingly, increasing the link masses does not necessarily
increase the power output. In fact, there is a crucial link mass
[Fig. 16(a)] which significantly deteriorates the power produc-
tion. As the link masses increase, the vibrations of each of the
beams resemble vibrations of clamped-clamped beams. In this
situation, the charge cancelation becomes significant and the
power decreases. The antiresonance in power corresponds to
perfect power cancellation in each of the beams. The optimal
resistance is almost insensitive to the link masses [Fig. 16(b)].

F. Torsional Dimensionless Variable

The dimensionless electromechanical analysis indicated that
the torsional dimensionless variable γ has no effect on the

power output. The optimal load is also unrelated to γ.
Section V-D discussed that the parameter γ has a negligible
effect on the natural frequency. We, therefore, with a good
approximation can neglect the torsional dimensionless variable,
γ, in both frequency and power analyses.

G. Lateral Distance of the Beams

It is shown in Fig. 17(a) that the power output severely drops
if the lateral distance between the members is larger than a
critical value. The critical value depends on the number of
members forming the structure. The power drop is associated
with the bending to torsion ratio discussed in Section V-G.
Increasing the lateral distance reduces the fundamental natural
frequency but at the same time increases the torsion in the
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Fig. 16. Effect of the link mass on (a) the maximum power transfer function and (b) the optimal resistance; the legend shows the number of beams.

Fig. 17. Effect of the lateral distance on (a) the maximum power transfer function and (b) the optimal resistance; the legend shows the number of beams.

Fig. 18. Effect torsion/bending stiffness ratio on (a) the maximum power transfer function and (b) the optimal resistance; the legend shows the number of beams.

structure. As the vibrations become torsional, the harvested
power drops. The optimal resistance is almost insensitive to
lateral distance as shown in Fig. 17(b).

H. Torsion/Bending Stiffness Ratio

The amount of bending deformation discussed in Section V-G
explains the direct relation between the power output and the
stiffness ratio parameter, k. The larger the stiffness ratio, the
more torsional stiffness and the larger the share of bending in
total deformation. Therefore, below a critical value of k, which
depends on the number of members, the power is proportional
to the second power of torsion/bending stiffness ratio (Fig. 18).

The optimal resistance is almost insensitive to the stiffness
ratio.

I. Number of Members

Thus far, the parameter study was performed by fixing all
except one of the dimensionless parameters and observing the
power and optimal dimensionless resistance variations. The
approach is altered for studying the role of the number of
members, since change of the number of members intrinsi-
cally changes the capacitance, natural frequencies, and other
dimensionless parameters. In the case, our approach is based
on considering a MEMS harvesting device and plotting the
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Fig. 19. Relation between the number of members and key power parameters: (a) capacitance, (b) forcing coefficient, and (c) coupling coefficient; the legend
shows the size scale.

Fig. 20. Relation between the number of members and key power parameters: (a) maximum power transfer function and (b) optimal load resistance; the legend
shows the size scale.

key power production parameters (μ̂, ψ̂, Ĉp) versus number
of members. Next, we study how the number of members is
related to the dimensionless power. Simultaneously, to test the
nondimensionality of our study, we do a scale analysis. We
consider three structures: a typical MEMS energy harvester, a
harvester from the same materials but where all the dimensions
are 1/5 of the original dimensions, and one where all the
dimensions are 20 times the original. We check to see if in spite
of their different sizes we can model three energy harvesters
using the same set of dimensionless parameters.

As shown in Fig. 19, for larger number of members, less
dimensionless capacitance, more dimensionless forcing term,
and less dimensionless electromechanical coupling result. The
decrease in dimensionless capacitance seems at first counter-
intuitive since the more members, the more the surface area

and capacitance. We must however note that, since the natural
frequency decreases, the dimensionless capacitance and not the
capacitance itself, decreases with the number of members.

Fig. 20(a) shows that the reduction in the coupling coefficient
comes at a price, and the dimensionless power decreases with
using more number of members. Comparing Figs. 20(a), 19(c)
and 6 reveals that the drop in coupling coefficient and conse-
quently power is due to the decrease in bending/torsion deflec-
tion ratio. In other words, the drop is because the vibrations
become more and more torsional, and the torsional deflections
do not result any charge due to the nature of torsional coupling.
The optimal resistance increases with the number of members
as shown in Fig. 20(b). In Fig. 19 as well as Fig. 20, the
parameters are independent of the scale, which confirms that
our analysis is truly dimensionless.
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J. Reflections on Zigzag Structure and MEMS Vibrational
Harvesting in General

At this point, we can clearly examine the practicality of the
zigzag structure. Comparing to other MEMS harvesters, the use
of zigzag geometry significantly enhances our tuning capabili-
ties without sacrificing the strength of the device. Referring to
Fig. 11, there is a four order of magnitude difference between
the power at resonance frequency versus the off resonance
power. This implies that the tuning capability can increase
the power output by four orders of magnitude provided the
other parameters stay the same. The power production variable,
however, decreases with the number of members as shown in
Fig. 20(a). Fortunately, the tuning capability significantly out-
performs the drop, and overall the zigzag structure is proven to
be a literally powerful solution for micropower generation. For
a case study that showcases the significant power enhancement
using the zigzag design, the reader may refer to [15].

The dimensionless analysis [particularly (37)] shows the
limits of microscale energy harvesting. We compare a large
size vibration harvester with a microscale. The actual power is
related to dimensionless as p = p̂ρAl3ω3

1 . The device should
always be tuned to the base excitation so ω1 is fixed. The
equivalent density of the bimorph is also constant. According
to (36), p̂ is proportional to â2

b which in turn is inversely
proportional to l2. The area is proportional to l2. Thus, the
the formula suggests that by shrinking the dimensions by an
order of magnitude, the power drops by three orders. In other
words, the produced power is to some extent proportional to
the volume of the harvester, provided the device is tuned to
excitations. This argument suggests selection of power per
energy harvester volume as a figure of merit. It also implies that
unless necessary, the size of harvesters must not be reduced to
microscale since that results in significant reduction of power
capacity. The argument is general and does not detract from the
practicality of the zigzag approach. The implementation of the
meandering geometry is a necessity to tune the frequency and
maximize the power production of the MEMS harvesters.

IX. CONCLUSION

A nondimensional analysis of the novel zigzag beam struc-
ture for low-frequency MEMS energy harvesting was pre-
sented. It was shown that the natural frequencies of the structure
are functions of six dimensionless parameters. The full electro-
mechanical problem was also modeled, and the power output
of the device was shown to be a function of 12 dimensionless
variables, six of them previously encountered in an exami-
nation of the natural frequencies. The vibration and energy
harvesting analyses were summarized in the graphs showing
the relation between the natural frequency and power output
and the dimensionless parameters affecting them. In addition,
the bending share in the deflection of the structure and key
power production parameters were studied. The variations of
power output according to the changes in excitation frequency
and shunt resistance were investigated. From that point on,
the power output at optimal excitation frequency and across
the optimal resistance was investigated. The variations of the

Fig. 21. Schematic diagram of a two member zigzag with tip and link masses.

optimal power generation with each of the other corresponding
dimensionless parameters were examined. The analysis is sum-
marized in an easy to use form, so that the other researchers
can utilize our dimensionless study to conveniently design and
predict the behavior of zigzag structures of arbitrary dimensions
and materials for vibrational power harvesting.

APPENDIX

ORTHOGONALITY OF THE MODE SHAPES

The mode shapes are extensively used in the electromechani-
cal vibration analysis of the zigzag structure. In this section, we
check to see if the derived mode shapes are orthogonal. For
briefness of calculations, we consider a two member zigzag
(Fig. 21) with both tip and link masses. The proof can be
generalized to n member zigzag structure.

We note the nth bending mode shape of the ith member by
iφn and the corresponding torsion mode shape by iBn. The free
vibration equations (10) and (11) are rewritten in modal form,
are premultiplied by the mode shapes, and are integrated over
the structure to give

2∑
i=1

∞∑
n=1

⎛⎝ L∫
0

iφmY Iiφ
(4)
n dxTn(t)

+

L∫
0

iφmρAiφndxT̈n(t)

⎞⎠ = 0 (40)

2∑
i=1

∞∑
n=1

⎛⎝ L∫
0

iBmGJiB
(2)
n dxTn(t)

+

L∫
0

iBmIp iBndxT̈n(t)

⎞⎠ = 0. (41)

We then integrate by parts the first integrals in (40) and (41)
and apply the boundary, equilibrium, and continuity conditions
in (3)–(6) which result

∞∑
n=1

⎧⎨⎩
⎡⎣Y I

L∫
0

iφ
′′
miφ

′′
ndx

⎤⎦+ dY IiBm(L)2φ(3)
n

⎫⎬⎭Tn

= −
∞∑

n=1

⎧⎨⎩
2∑

i=1

⎡⎣ρA

L∫
0

iφmiφndx

⎤⎦+ 2φm(0)mt 2φn(0)

+ 1φm(L)ml1φn(L)

}
T̈n (42)
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∞∑
n=1

⎧⎨⎩
2∑

i=1

⎡⎣GJ

L∫
0

iB
′
niB

′
mdx

⎤⎦− dY I iBm(L)2φ
(3)
2

⎫⎬⎭Tn

= −
∞∑

n=1

⎧⎨⎩
2∑

i=1

⎡⎣Ip

L∫
0

iBmiBndx

⎤⎦⎫⎬⎭ T̄n. (43)

We then add (42) and (43) to cancel the mixed terms. Since
we are considering the free vibrations, we can substitute T̄n by
−ω2

nTn

2∑
i=1

⎡⎣Y I

L∫
0

iφ
′′
miφ

′′
ndx + GJ

L∫
0

iB
′
niB

′
mdx

⎤⎦Tn(t)

−

⎧⎨⎩
2∑

i=1

⎡⎣ρA

L∫
0

iφmiφndx + Ip

L∫
0

iBmiBndx

⎤⎦
+2φm(0)mt 2φn(0) + 1φm(L)ml 1φn(L)}ω2

nTn(t)
= 0. (44)

It can be proven [19], [24], [25] that (44) implies that

2∑
i=1

⎡⎣ρA

L∫
0

iφmiφndx + Ip

L∫
o

iBmiBndx

⎤⎦
+ 2φm(0)mt2φn(0) + 1φm(L)ml1φn(L) = anδmn

(45)
2∑

i=1

⎡⎣Y I

L∫
0

iφ
′′
miφ

′′
ndx + GJ

L∫
0

iB
′
niB

′
mdx

⎤⎦ = anω2
nδmn.

(46)

The parameter an represents an arbitrary number.
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